Tuesday, 02 September 2014
masthead+quote+image
Advanced search

Wireless recharging on the move

Researchers have developed new technology and techniques for transmitting power wirelessly from a stationary source to a mobile receiver.

The research, conducted at North Carolina State University, could lead to so-called highway ‘stations’ that can recharge electric vehicles wirelessly as the vehicles drive by.

‘We’ve made changes to both the receiver and the transmitter in order to make wireless energy transfer safer and more efficient,’ said Dr Srdjan Lukic, an assistant professor of electrical engineering at NC State and senior author of a paper on the research.

The researchers developed a series of segmented transmitter coils, each of which broadcasts a low-level electromagnetic field. The researchers also created a receiver coil that is the same size as each of the transmitter coils, and which can be placed in a car or other mobile platform.

The researchers modified the receiver so that when it comes into range and couples with a transmitter coil, that specific transmitter coil automatically increases its current – boosting its magnetic field strength and the related transfer of energy by 400 per cent. The transmitter coil’s current returns to normal levels when the receiver passes out of the range of the transmitter.

These modifications are claimed to improve on previous mobile, wireless power transfer techniques.

One previous approach was to use large transmitter coils, but this approach created a powerful and imprecise field that could couple to the frame of a car or other metal objects passing through the field. Because of the magnetic field’s strength, which is required to transfer sufficient power to the receiver, these electromagnetic field ‘leaks’ raised safety concerns and reduced system efficiency.

Another previous approach used smaller transmitter coils, which addressed safety and efficiency concerns. But this approach would require a very large number of transmitters to effectively ‘cover’ a section of the roadway, adding substantial cost and complexity to the system, and requiring very precise vehicle position detection technology.

‘We tried to take the best from both of those approaches,’ Lukic said in a statement.

Lukic and his team have developed a small, functional prototype of their system, and are now working to both scale it up and increase the power of the system.

Currently, at peak efficiency, the new system can transmit energy at a rate of 0.5kW. ‘Our goal is to move from 0.5kW into the 50kW range,’ Lukic said. ‘That would make it more practical.’

The paper, ‘Reflexive Field Containment in Dynamic Inductive Power Transfer Systems,’ is published online in IEEE Transactions on Power Electronics.


Readers' comments (3)

  • Assuming these vehicles will carry passengers, would the 50Kw version not generate eddy currents in passengers passing by, with a resultant heating effect.
    50 years since I studied this stuff but a distant memory stirs.
    50Kw converts to 67bhp, not counting losses, so it's not very powerful for automotive purposes. Lorries and buses will struggle.

    Unsuitable or offensive? Report this comment

  • Its time to come out of inductive charging wireless technology.There is a technology called Capacitive live charging of cars from the road using an RLC circuit where there is no magnetic coupling there .Dielectric coupling between two plates and air is acting as the dielectric. Please contact vinodkrajan@yahoo.com for more information about this idea

    Unsuitable or offensive? Report this comment

  • This sounds a bit like Tesla's idea of radio transmission of electricity

    Unsuitable or offensive? Report this comment

Have your say

Mandatory
Mandatory
Mandatory
Mandatory

My saved stories (Empty)

You have no saved stories

Save this article