Saturday, 23 August 2014
masthead+quote+image
Advanced search

Graphene has potential as cell membrane modelling surface

Researchers at Manchester University have demonstrated that membranes can be directly ‘written’ on to a graphene surface using Lipid Dip-Pen Nanolithography (L-DPN).

The researchers at Manchester University - led by Dr Aravind Vijayaraghavan, and Dr Michael Hirtz at the Karlsruhe Institute of Technology (KIT) - describe their work in Nature Communications.

The human body contains 100 trillion cells, each of which is enveloped in a cell membrane that have a plethora of proteins, ion channels and other molecules embedded in them, each performing vital functions.

Understand these systems will enable their application in areas such as bio-sensing, bio-catalysis and drug-delivery. Considering that it is difficult to accomplish this by studying live cells inside the human body, scientists have developed model cell membranes on surfaces outside the body, to study the systems and processes under more convenient and accessible conditions.

Dr Vijayaraghavan’s team at Manchester and their collaborators at KIT have shown that graphene is a suitable new surface on which to assemble these model membranes, and is claimed to bring many advantages compared to existing surfaces.

In a statement, Dr Vijayaraghavan said: ‘Firstly, the lipids spread uniformly on graphene to form high-quality membranes. Graphene has unique electronic properties; it is a semi-metal with tuneable conductivity.

‘When the lipids contain binding sites such as the enzyme called biotin, we show that it actively binds with a protein called streptavidin. Also, when we use charged lipids, there is charge transfer from the lipids into graphene which changes the doping level in graphene. All of these together can be exploited to produce new types of graphene/lipids based bio-sensors.’

Dr. Michael Hirtz (KIT) said: ‘The [L-DPN] technique utilises a very sharp tip with an apex in the range of several nanometres as a means to write lipid membranes onto surfaces in a way similar to what a quill pen does with ink on paper.

‘The small size of the tip and the precision machine controlling it allows of course for much smaller patterns, smaller than cells, and even right down to the nanoscale.

‘By employing arrays of these tips multiple different mixtures of lipids can be written in parallel, allowing for sub-cellular sized patterns with diverse chemical composition.’


Have your say

Mandatory
Mandatory
Mandatory
Mandatory

My saved stories (Empty)

You have no saved stories

Save this article