More in

Research points to potential of 'tumbleweed' Mars rovers

New research from North Carolina State University shows that a wind-driven ‘tumbleweed’ Mars rover would be capable of moving across rocky Martian terrain.

The university claims the findings could help inform NASA as to the best-possible vehicle design for Mars missions.

‘There is quite a bit of interest within NASA to pursue the tumbleweed rover design, but one of the questions regarding the concept is how it might perform on the rocky surface of Mars,’ said Dr Andre Mazzoleni, an associate professor of mechanical and aerospace engineering (MAE) at NC State and co-author of a paper describing the research. ‘We set out to address that question.’

According to a statement, Mazzoleni and Dr Alexander Hartl, an adjunct professor of MAE at NC State, developed a computer model to determine how varying the diameter and mass of a tumbleweed rover would affect its speed and ability to avoid getting stuck in Martian rock fields. Rock fields are common on the surface of Mars, which averages one rock per square metre.

‘We found that, in general, the larger the diameter, and the lower the overall weight, the better the rover performs,’ Mazzoleni said. In addition, the study found that a tumbleweed rover would need to have a diameter of at least 6m in order to achieve an acceptable level of performance — meaning the rover could move through rock fields without getting stuck.

Using the model, the researchers also found that tumbleweed rovers are more likely to bounce than roll across the surface, due to the spacing of the rocks and the size of the rovers.

‘Computer simulations are crucial for designing Mars rovers… Earth-based testing alone cannot establish whether a particular design will work on Mars,’ said Mazzoleni.

Mars has approximately three-eighths of Earth’s gravity. And the atmospheric density on the surface of Mars is only duplicated around 100,000ft above the Earth’s surface.

Tumbleweed rovers are claimed to be attractive because they can cover much larger distances and handle rougher terrain, than the rovers that have already been sent to Mars — such as Spirit and Opportunity.

‘This model is a tool NASA can use to assess the viability of different designs before devoting the time and expense necessary to build prototypes,’ Mazzoleni said.

While tumbleweed rovers would lack the precise controls of the wheeled rovers, they would also not rely on a power supply for mobility as they would be literally blown across the Martian landscape by the wind.