Friday, 31 October 2014
Advanced search

Scientists unveil first ever images of Landau Levels

Physicists have directly imaged Landau Levels — the quantum levels that determine electron behaviour in a strong magnetic field — for the first time since they were theoretically conceived of by Nobel prize winner Lev Landau in 1930.

Using scanning tunnelling spectroscopy, scientists at institutions including Warwick University and Tohoku University have revealed the internal ring-like structure of these Landau Levels at the surface of a semiconductor.

According to a statement, the experimental challenge in the work was to have sufficient spatial resolution in order to overcome the intrinsic disorder in the material, which usually only allows the observation of smeared-out ‘drift’ states.

The images reportedly show that Landau was correct when he predicted that, in a clean system, electrons would take on the form of concentric rings, the number of which increase according to their energy level.

This simple counting behaviour forms the basis of the so-called quantum Hall effect.

While originally of mostly fundamental interest, the effect has in recent years been used to define the standard for what is meant by electrical resistance and could soon be employed to define the kilogram as well.

Prof Rudolf Roemer of the Department of Physics at Warwick University said: ‘This is an exciting step for us, we are really seeing for the first time individual quantum mechanical wave functions of electrons in real materials.

‘On the face of it this might seem far removed from everyday life.

‘However the question of what defines a kilogram is currently being debated, with the spacing between the rings of these Landau levels acting as a kind of marker for a universal weight.

‘So next time you measure out your sugar to bake a cake, you might unknowingly be making use of these quantum rings.’

The research was published in the journal Physical Review Letters.


Have your say

Mandatory
Mandatory
Mandatory
Mandatory

My saved stories (Empty)

You have no saved stories

Save this article