New research suggests damaging effects of electro-magnetic fields

A new study, published in the Cancer Cell International, presents experimental evidence to show that extremely low frequency electro-magnetic fields can be detrimental to health.

A new study, published in the Cancer Cell International, presents experimental evidence to show that extremely low frequency electro-magnetic fields can have a potentially damaging effect on the process of cell division in (already) radiation-injured cells, which could lead to them becoming cancerous.

Cell division and the growth cycle are said to rely on two major events. The first involves the replication of the cell’s genetic material (DNA). The second involves cell separation into two ‘daughter’ cells. These steps are separated by two pauses: the first occurs after cells have divided, but before the next round of DNA synthesis (G1) and the second between DNA synthesis and division (G2).

These pauses allow the cell to take stock of each stage of the process before progressing to the next. The checkpoint in G1 prevents cells from duplicating their DNA if conditions are unfavourable, whilst the checkpoint in G2 stops cells from dividing when damage has occurred to the chromosomes (DNA). These checkpoints effectively police the process of cell division so that risk of damaged cells replicating is minimised.

When the molecules involved in cell division are damaged by ionising radiation, for example, it can lead to uncontrolled growth and the development of cancer. The research in Cancer Cell International examines the effects of combined ELF-EMF and ionising radiation on human cells.

The researchers could not find any change in the process of cell division in cells exposed to ELF-EMF alone, but exposure to ionising radiation predictably caused the process of division to slow down as the cells were held at each checkpoint in order to repair the damage.

It was anticipated that the combined effect of ELF-EMF and ionising radiation would further slow down cell cycle. However, cell division was slightly faster in 12 out of 20 experiments, but never slower.

It is well known that ionising radiation can itself cause cancer, but it seems that ELF-EMF makes the cells push on into division where errors become compounded.

The researchers suggest that ELF-EMF may interfere with the G2 checkpoint that normally stops damaged cells entering division before they have had the opportunity to repair the damage, increasing the chances of them becoming cancerous.

The study is at a preliminary stage; however, the researchers hope that this will open up a new line of investigation and help to understand the risks associated with ELF-EMF, for example, suspected in communities living in close proximity to high voltage transmission lines.