Vital science

Manchester University is establishing a £3m research centre dedicated to developing new science applicable to manufacturing processes, power station planning and analysis of the human body.


The University of Manchester is establishing a £3m research centre dedicated to developing new science applicable to manufacturing processes, power station planning and analysis of the human body.



The Centre for Interdisciplinary Computational And Dynamical Analysis (CICADA) – which brings together computer scientists, mathematicians and engineers – is being established with a £1.75m grant from the Engineering and Physical Sciences Research Council (EPSRC).



Researchers are aiming to develop new fundamental knowledge and techniques, which in the long-term could be applied in many different areas, including flight controllers in aircraft and car safety systems.



The work will focus on systems in which there are complex interactions between components that switch discretely and other components that change continuously.



Life or death



Techniques developed by computer scientists to make sure computer programmes work correctly – particularly important in safety critical situations – cannot be used in these systems due to the element of continuous change.



Modern society is relying increasingly on computer microprocessors in circumstances where failure might result in loss of life.



But academics say there is still a major gap between designs that humans are prepared to trust with their lives and those based on the most technically advanced solutions.



Professor David Broomhead from The School of Mathematics said: ‘In situations of life and death, we have little confidence in technically advanced digital systems due to their complexity and the lack of appropriate testing tools.



‘Whenever an embedded computer system in something like an Electronic Stability Control (ESC) system in a car has to interact with the real world, we have what is known as a hybrid system.’



Dr Jonathan Shapiro from The School of Computer Science said: ‘With a digital system it is, in theory at least, possible to list and therefore test all of the states it can be found in.



‘But when a digital system begins to interact with the real world this is no longer the case and so new techniques must be devised that will allow us to predict the behaviour and test the design.



‘Techniques developed in mathematics to predict the time course of continuous systems and the errors in the prediction, break down due to the discrete aspect of these systems.’



CICADA will bring together pure and applied mathematicians, computer scientists, control theory engineers and biologists to work on this.