Could copying nature preserve the environment?

The 1998 Kyoto conference on greenhouse gas emissions found Australia to have one of the highest levels of carbon dioxide emissions per head of population in the world. Antipodean researchers are, however, developing technology that may help to combat the Greenhouse Effect and create food and an alternative source of fuel at the same time.

Scientists at CSIRO’s Telecommunications and Industrial Physics are developing artificial photosynthesis, which copies what plants do by taking light and carbon dioxide and converting them to energy to produce food.

The researchers hope that this technology will be used one day to clean up carbon dioxide waste and reduce the ‘Greenhouse Effect’.

‘In nature, leaves absorb carbon dioxide from the air and convert it to sugar and other carbon products,’ says project leader Dr Vijoleta Braach-Maksvytis.

‘By imitating this process with a mix of manufactured materials instead of chlorophyll, we are hoping to develop technology that can reduce the large amounts of carbon dioxide emitted into the atmosphere from power stations and cars.’

‘By-products of the process could be a valuable alternative fuel, methane, or even food in the form of starches and sugars.’

The research is still in its early days, but has started to show encouraging results according to Dr Braach-Maksvytis.

‘We are getting our first results now. So far we have been able to produce energy in the lab, and also we have produced methane, but we still have a long way to go.’

Nature’s manufacturing process, ‘self-assembly’, builds from the bottom up, choosing the right components to drive the assembly of the final intricate and complex material, device, or system such as the eyeor photosynthesis.

This same principle is being used to manufacture, from the bottom up, items such as ‘green’ computer chips and environmental gas sensors.

‘The manufacture of chips for the computer industry is an expensive and above all, toxic process,’ said Dr Braach-Maksvytis.

‘The demand for ever smaller dimensions is pushing the chips into the dimensions of the nanometre, which overlaps with the dimensions of biology. Our work in this field is to develop a nano smart structure — a self-assembly ‘stamping’ technique — to safely and easily produce integrated circuit components on silicon chips and semiconductors,’ concluded Dr Braach-Maksvytis.