GE to lead hydrogen fuel team

GE Global Research has been selected by the US Department of Energy to lead $11 million of research projects in the development of hydrogen as a fuel source.

GE Global Research, the centralised research organisation of General Electric, has been selected by the US Department of Energy (DOE) to lead $11 million of research projects in the development of hydrogen as a fuel source.

The programs are focused on near and long-term solutions for the production of hydrogen with sustainable, clean technologies. GE Global Research will contribute approximately $2.5 million to the projects with the balance coming from the DOE and other industry partners.

The three projects, chosen through a merit-review, competitive solicitation process, are part of a $75 million research effort announced by DOE to support President Bush’s Hydrogen Fuel Initiative.

According to a DOE announcement, the research effort is reflective of the emphasis the department has placed on renewable and distributed production of hydrogen. The goal of this research is to address major technical and economic hurdles in renewable and distributed hydrogen production technologies that must be overcome to make hydrogen powered transportation a reality.

For the last two years, GE researchers have been exploring hydrogen production, storage, distribution and usage technologies, which would be applicable to both the transportation and energy generation industries.

The first of three programs being led by GE Global Research involves Solar Electrochemical Water Splitting, where GE Global Research, along with the California Institute of Technology, will discover materials and develop designs for a solar-to-hydrogen system.

The idea is to develop a system that will employ solar energy to extract hydrogen from water using a photoelectrochemical process. The team will aim to meet DOE goals of developing devices with nine percent solar-to-hydrogen efficiency, a lifetime of 10,000 hours, and a hydrogen cost of $22/kg by 2010, and $5/kg by 2015.

Similarly, GE Global Research, the University of Minnesota and Argonne National Laboratory, will develop Small Scale Natural Gas/Bio-derived Liquid Reformers, a compact reforming technology that will enable hydrogen to be produced from natural gas and renewable fuels, such as methanol and ethanol.

According to GE, the proposed hydrogen reformer will allow for significantly greater compactness and lower capital costs than conventional approaches. The concept was selected as a result of detailed process analyses of more than 20 reforming concepts for application in refuelling stations.

Preliminary analysis demonstrated that the reformer is capable of meeting all performance targets, such as high efficiency, compactness, low capital costs, low emissions and high turndown capability. This project is focused on technology that can be developed and commercialised within five years.

Finally, GE Global Research, Northwestern University and Functional Coating Technology, LLC, will develop an electrolyser concept that aims to be efficient, affordable and environmentally friendly.

Electrolysis, extracting hydrogen from water, is one of the cleanest methods for producing hydrogen from an abundant source that produces no carbon emissions and allows for distributed hydrogen generation.

Current electrolysis production technologies are energy-intensive and not cost-competitive on a large scale. High temperature steam electrolysis using solid oxide technology is said to have the potential for highly efficient and affordable hydrogen generation. According to GE, a reversible solid oxide electrolysis cell (SOEC) hydrogen production system capable of producing either hydrogen or electricity on demand is a pathway to a cost-competitive, distributed renewable system.