Photonic platform aims for rapid diagnosis of nRDS

Scientists in the UK are developing a rapid test to diagnose neonatal Respiratory Distress Syndrome (nRDS) in premature babies.

Image by RitaE from Pixabay

The photonic platform is said to combine the capabilities of fingerprint Mid-IR (mid-infrared) and Raman spectroscopies to create a compact, versatile and easily operated device with the potential to underpin a range of next-generation biomedical diagnostic applications.

Infra-red test to help target life-saving treatment for premature babies

Researchers are investigating whether biomarkers from COVID-19 could also be identified using the technique while experiments are paused during the national lockdown.

The three-and-a-half year project, led by Associate Professor Dr Senthil Ganapathy, brings together Southampton University’s Optoelectronics Research Centre with scientists from University Hospital Southampton and University College London Hospital.

“There is a pressing need for diagnostic tools that can produce results quickly from patients’ bedsides and in doctors’ surgeries,” Senthil said in a statement. “Rapid, accurate results will allow rapid therapeutic decisions and save lives at reduced cost. In contrast, existing technologies require transfer of samples to centrally located laboratories equipped with sophisticated instruments, and highly skilled personnel.

“In this project, we are developing two-in-one attenuated total reflection/Raman chips that are compact, mass-producible, affordable, reliable, user-friendly and highly sensitive. These bedside diagnostics would provide analysis results within a few minutes and transform treatments for many critically ill patients.”

Researchers are initially focusing on specific biomarkers for the rapid diagnosis of nRDS in premature babies, a condition that occurs when a baby’s lungs are not fully developed and cannot provide enough oxygen, causing breathing difficulties.

There are currently no clinical tests available to diagnose this syndrome so most infants are treated with surfactants whether or not they need them, which can lead to severe complications for those whose lungs are already mature enough.

“Our diagnostic device platform will allow timely, targeted intervention,” Senthil said. “Fingerprint Mid-IR and Raman spectroscopies have each been shown to be powerful biodiagnostic tool for specific biomarkers. In addition, we are developing a unique signal enhancement strategy that will simultaneously benefit both spectroscopies and significantly enhance their sensitivities.”

The new photonic technology and its portable diagnostic device holds potential for point-of-care diagnostics but could also lead to applications in environmental monitoring and sensing including water pollution monitoring and trace toxic gas sensing.

The project has received over £800,000 of funding from the Engineering and Physical Sciences Research Council and will run until June 2023.