Product Details Supplier Info More products
Download document:

Hydrogen-leak-detection-technical-note - .PDF file.

FLIR Systems has published a technical note that describes how its GF343 Optical Gas Imaging (OGI) camera is helping utility companies using hydrogen-cooled generators avoid costly power outages.

The operation of an electric power generator produces large amounts of heat that must be removed to maintain efficiency. Depending on the rated capacity of the generator, it might be air cooled, hydrogen cooled, water cooled, or in the largest capacity generators, a combination of water for the stator windings and hydrogen for the rotor. Hydrogen cooling offers excellent efficiency thanks to low density, high specific heat and thermal conductivity.

The technical note discusses how maintenance of hydrogen-cooled generators is critical for the safe and efficient operation of a power plant. Finding and repairing hydrogen leaks from the cooling system can be difficult, time-consuming and potentially dangerous due to the explosive nature of the gas. Traditional methods for hydrogen leak detection tend to be unreliable at finding the source of the leak and better at finding a general area where hydrogen is present. The use of the FLIR GF343 OGI camera is shown to improve the efficiency and performance of leak detection considerably.

The FLIR GF343 OGI camera uses Carbon Dioxide (CO2) as a tracer gas, which is readily available at generating stations. Carbon Dioxide is inexpensive, has a much lower GWP, and
much fewer restrictions compared to the traditionally used Sulfur Hexafluoride (SF6).
The authors describe because only a small concentration of CO2 (3-5%) needs to be added as a tracer gas to the hydrogen to make leaks visible to the OGI Camera, the purity level of the hydrogen in the turbine is maintained and normal generating operations are allowed to continue.

As leak detection can now be performed under full operation using the GF343 saves time and money reducing shutdown time by several days representing a lost revenue saving of $80,0000- 100,000 / day. Consequently, the payback and return of investment by using CO2 as a tracer gas and the FLIR GF343 OGI camera is significant.

The FLIR GF343 OGI camera uses a sensitive Indium Antimonide (InSb) detector spectrally adapted to provide optimum performance at 4.3 microns. This spectral tuning is critical to the optical gas imaging technique and, in the case of the FLIR GF343 this makes the camera specifically responsive and ultra-sensitive to CO2 gas infrared absorption.

FLIR Systems specialises in technologies that enhance perception and awareness.  The company brings innovative sensing solutions into daily life through its thermal imaging and visible light imaging technology and systems for measurement, diagnosis, location and advanced threat detection.  Its products improve the way people interact with the world around them, enhance productivity, increase energy efficiency and make the workplace safer.

FLIR Systems has six operating segments – surveillance, instruments, OEM and emerging markets, maritime, security and finally, detection. Of these six, ‘instruments’ is of greatest interest to trade and industry and the second largest segment in the company’s portfolio. This division provides devices that image, measure and assess thermal energy, gases and other environmental elements for industrial, commercial and scientific applications.

These products are manufactured across five production sites, three in the USA and two in Europe; Sweden and Estonia.

A model to suit every application and budget
The options that FLIR Systems provides for measuring temperature and studying thermal performance have never been greater.  Not only does the company offer a huge range of models to suit all thermal application needs but the technology is also affordable and very easy to use.  Thermal cameras now come in various shapes, sizes and degrees of sophistication and FLIR continues to invest heavily in the development of new and complementary technologies to differentiate itself from competitors.

An important milestone in the development of thermal imaging has been the introduction of the FLIR Lepton® core, a micro longwave detector, the size of a mobile SIM.  This has allowed thermal imaging to be repackaged to meet the needs of an even wider audience and, in combination with another new technology called Infrared Guided Measurement – IGM™ – has led to the development of a range of test and measurement meters with imaging capability.

Another important growth area for FLIR thermal imaging is in continuous monitoring to assure quality and safety.  Through its introduction of discrete fixed mounted thermal cameras which are fully compliant industry standard plug-and-play protocols, FLIR Systems has provided industry with infrared machine vision which is instantly ready for quick and easy network installation.

Protecting assets and people from fire is an area for which thermal imaging is least known but, thanks to FLIR Systems’ development, it is now one of the most cost-effective methods available.  Its application flexibility and rapid return on investment present an attractive proposition for any site or safety manager.

View full profile