Product Details Supplier Info More products

FLIR Systems reports how its research grade thermal imaging cameras are helping researchers better understand the role of temperature in the construction of 3D-printed components.

Additive Manufacturing (AM), also known as 3D printing, is revolutionizing manufacturing, because it uses computerized or digital models to generate simple parts and complex components, and adds material only where it is needed. A growing number of high-tech organizations around the world are using AM technologies to use in applications ranging from product development to specialized manufacturing, in ways as diverse as architectural design, aerospace components, and medical implants.

Unfortunately, 3D printed parts sometimes suffer from low quality, which is most often due to an unknown cause-and-effect relationship between a manufacturing process parameter, such as a polymer needing to be heated to a specific temperature, and process characteristics, such as part geometry and significant distortion as a result of cooling rate. Too often, process parameters are set using trial-and-error techniques, which are time-consuming, costly, highly subjective, and machine- and/or material-specific.

Thermal cameras are proving their value in advancing a wide range of emerging AM technologies by offering researchers and material scientists the accurate results needed to fine-tune materials, equipment, and process parameters while reducing development time and expenses.

By studying the 3D printing process and its thermal properties with thermal cameras, manufacturers have been able to make quick corrections with minimal production delays.

Research grade thermal cameras, because of their high thermal sensitivities (down to 0.018 °C) and small spatial resolution capabilities (as small as 3.5 µm per pixel), are able to monitor the effect of changes to 3D printer settings and base materials. And, because they offer non-contact temperature measurements of up to 1 million points in a single thermal image, these thermal cameras are capable of identifying sources of quality problems, including part porosity, delamination, shrinkage, poor surface finish, dimensional or form errors, and thermal stresses and distortion. With Additive Manufacturing expected to continue its rapid growth and adoption in the coming years, the use of thermal cameras will be a key tool in ensuring that processes are optimized to provide uniform, quality parts.

For more information about the use of FLIR research grade thermal cameras in additive manufacturing please contact FLIR Systems on +32-3665-5100 or visit www.flirmedia.com/MMC/THG/Brochures/RND_074/RND_074_US.pdf.

FLIR Systems specialises in technologies that enhance perception and awareness.  The company brings innovative sensing solutions into daily life through its thermal imaging and visible light imaging technology and systems for measurement, diagnosis, location and advanced threat detection.  Its products improve the way people interact with the world around them, enhance productivity, increase energy efficiency and make the workplace safer.

FLIR Systems has six operating segments – surveillance, instruments, OEM and emerging markets, maritime, security and finally, detection. Of these six, ‘instruments’ is of greatest interest to trade and industry and the second largest segment in the company’s portfolio. This division provides devices that image, measure and assess thermal energy, gases and other environmental elements for industrial, commercial and scientific applications.

These products are manufactured across five production sites, three in the USA and two in Europe; Sweden and Estonia.

A model to suit every application and budget
The options that FLIR Systems provides for measuring temperature and studying thermal performance have never been greater.  Not only does the company offer a huge range of models to suit all thermal application needs but the technology is also affordable and very easy to use.  Thermal cameras now come in various shapes, sizes and degrees of sophistication and FLIR continues to invest heavily in the development of new and complementary technologies to differentiate itself from competitors.

An important milestone in the development of thermal imaging has been the introduction of the FLIR Lepton® core, a micro longwave detector, the size of a mobile SIM.  This has allowed thermal imaging to be repackaged to meet the needs of an even wider audience and, in combination with another new technology called Infrared Guided Measurement – IGM™ – has led to the development of a range of test and measurement meters with imaging capability.

Another important growth area for FLIR thermal imaging is in continuous monitoring to assure quality and safety.  Through its introduction of discrete fixed mounted thermal cameras which are fully compliant industry standard plug-and-play protocols, FLIR Systems has provided industry with infrared machine vision which is instantly ready for quick and easy network installation.

Protecting assets and people from fire is an area for which thermal imaging is least known but, thanks to FLIR Systems’ development, it is now one of the most cost-effective methods available.  Its application flexibility and rapid return on investment present an attractive proposition for any site or safety manager.

View full profile