Product Details Supplier Info More products

FLIR Systems has published a white paper that discusses how new Infrared (IR) camera technologies are providing engineers and technicians with the tools they need to address the difficulties of high-speed automotive testing.

Product research and development on internal combustion engines, brake rotors and tires, and high- speed airbags are discussed as just a few of the areas that could truly benefit from high speed, high sensitivity thermal characterization testing. Measuring temperature on objects that are moving fast is challenging. Traditional forms of temperature measurement such as thermocouples are not practical for systems in motion. Non-contact forms of temperature measurement such as spot pyrometers lack the fast response rates necessary to take accurate readings on fast moving objects or to thermally characterize a high-speed target accurately. In addition, infrared cameras with uncooled detectors are also unable to measure temperature accurately at extreme high speeds.

Without the appropriate tools for adequate thermal measurement and testing, automotive design engineers can lose time and efficiency, and risk missing defects that lead to dangerous products and expensive recalls.

The authors of the white paper discuss how in order to visualize and take accurate temperature readings on extremely fast-moving targets, you need a cooled thermal camera with a short exposure time and fast frame rate. This white paper explores thermal and quantum detector types, a camera’s ability to synchronize and trigger to external events, the importance of high sensitivity and the advantages of Longwave Infrared (LWIR) measurements.

The white paper concludes that next generation LWIR camera technologies may offer automotive engineers a solution. These cameras incorporate 640 x 512-pixel high resolution detectors that can capture images at a rate of 1000 frames per second. In addition, using Strained Layer Superlattice (SLS) detectors, these cameras offer wide temperature ranges with a combination of great uniformity and quantum efficiency beyond that of traditional MCT and QWIP detector materials. These new technologies, plus the ability to synchronize and trigger remotely, give engineers and technicians the tools they need to address the difficulties of high-speed automotive testing.

To download a full copy of this white paper please visit https://www.flir.co.uk/discover/rd-science/next-generation-ir-technologies-solve-high-speed-automotive-testing-challenges/  or contact FLIR Systems on +32-3665-5100 /research@flir.com.

FLIR Systems specialises in technologies that enhance perception and awareness.  The company brings innovative sensing solutions into daily life through its thermal imaging and visible light imaging technology and systems for measurement, diagnosis, location and advanced threat detection.  Its products improve the way people interact with the world around them, enhance productivity, increase energy efficiency and make the workplace safer.

FLIR Systems has six operating segments – surveillance, instruments, OEM and emerging markets, maritime, security and finally, detection. Of these six, ‘instruments’ is of greatest interest to trade and industry and the second largest segment in the company’s portfolio. This division provides devices that image, measure and assess thermal energy, gases and other environmental elements for industrial, commercial and scientific applications.

These products are manufactured across five production sites, three in the USA and two in Europe; Sweden and Estonia.

A model to suit every application and budget
The options that FLIR Systems provides for measuring temperature and studying thermal performance have never been greater.  Not only does the company offer a huge range of models to suit all thermal application needs but the technology is also affordable and very easy to use.  Thermal cameras now come in various shapes, sizes and degrees of sophistication and FLIR continues to invest heavily in the development of new and complementary technologies to differentiate itself from competitors.

An important milestone in the development of thermal imaging has been the introduction of the FLIR Lepton® core, a micro longwave detector, the size of a mobile SIM.  This has allowed thermal imaging to be repackaged to meet the needs of an even wider audience and, in combination with another new technology called Infrared Guided Measurement – IGM™ – has led to the development of a range of test and measurement meters with imaging capability.

Another important growth area for FLIR thermal imaging is in continuous monitoring to assure quality and safety.  Through its introduction of discrete fixed mounted thermal cameras which are fully compliant industry standard plug-and-play protocols, FLIR Systems has provided industry with infrared machine vision which is instantly ready for quick and easy network installation.

Protecting assets and people from fire is an area for which thermal imaging is least known but, thanks to FLIR Systems’ development, it is now one of the most cost-effective methods available.  Its application flexibility and rapid return on investment present an attractive proposition for any site or safety manager.

View full profile