Product Details Supplier Info More products

Cognex has revealed how its Visionpro vision software has optimised the production of thin-film solar modules.

The Jenoptik-Votan Solas 100/200 was designed for pattern scribing on thin-film solar modules using laser and/or needles for all the process steps (P1, P2 and P3).

In the standard machines, six industrial cameras combine with Visionpro vision software from Cognex to maintain process-tool calibration, determine wear status and check that solar modules are processed correctly.

Because set-up, processing and the subsequent quality inspection take 60seconds per module, manufacturers can achieve a throughput advantage in the competitive sustainable-energy market.

Thin-film technology that relies on vapour-deposited or sputtered photoactive semiconductors on a glass substrate generally uses less energy and material and offers reduced manufacturing costs when compared with silicon-based solar cells.

Modern thin-film solar cells consist of a metal layer, a semiconductor layer and a transparent, electrically conductive oxide layer.

In the first step, the Votan Solas 100 uses several lasers to scribe patterns in the bottom layer, also called P1.

On CIS/CIGS modules, mechanical tools process the two layers above this: P2 and P3.

An integrated needle-comb unit precisely scribes the structures into the surface at a speed of up to 1.5m/sec.

Every needle is individually actuated and positioned in this process, allowing the system to adjust quickly to different cell sizes and react accurately to changes.

Automatic needle alignment minimises set-up times to achieve greater throughput.

The vision system records the actual position of the tools in seconds.

At the same time, three additional cameras measure the P1 track of the automatically fed solar panel.

The cameras supply three reference points for auto-alignment and depending on the location and position of the P1 structures Visionpro provides data to adjust the machine’s co-ordinate system and correct the tool path.

The goal of the process is to minimise displacement of the P1 structures in relation to the P2 and P3 layers to achieve cell efficiency.

Processing tools then scribe the P2 and P3 layers to a positional accuracy of 5um.

In the final inspection step, two more cameras closely examine the solar module again and inspect the quality with Visionpro vision software, looking for micro cracks, broken glass and potential detachment of layer particles.

This machine with Visionpro vision software is quick and easy to integrate into complex production lines, according to Cognex.

The software ignores non-critical changes in the appearance of the solar panel and concentrates on the features important for the quality of products.

The comprehensive tools of this vision software do not require any complex image pre-processing, which accelerates application development and reduces lifecycle costs.

View full profile