More in
3D bioprinted heart provides new tool for surgeons
Researchers from the College of Engineering at Carnegie Mellon University, USA, have created a full-size 3D bioprinted human heart model.

Professor of Biomedical Engineering, Adam Feinberg, led the research team in using their Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technique to create the model. Their paper detailing the work has been published in ACS Biomaterials Science and Engineering.
Bioprinting microrobot holds promise for internal tissue repairs
New material enables 3D-printed vascular structures
Your questions answered: 3D bioprinting
Using a specially built 3D printer, the model reportedly mimics the elasticity of cardiac tissue and sutures realistically. The culmination of two years of research, the team is hoping this latest breakthrough will hold promise for surgeons and clinicians and have long term implications for the future of bioengineered organ research.
Aiming to fill the demand for 3D printed soft polymers, the FRESH technique uses a needle to inject bioink into a bath of soft hydrogel which supports the object as it prints. Once finished, application of heat melts away the hydrogel leaving only the 3D bioprinted object.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
UK not prepared for climate impacts, says CCC
Perhaps a Longtitude prize to solve railway line problems. "extreme heat causing further disruption through rail buckling and power line...