Detecting and deflecting the asteroid threat

Engineers around the world are developing technology to protect our planet from potentially catastrophic asteroid collisions

stock.adobe.com

For the inhabitants of the Russian city of Chelyabinsk, the events of 15 February 2013 will never be forgotten.

Just after nine o’clock in the morning, as commuters made their way to work along the city’s snow-covered roads, and schoolchildren settled down for their lessons, a 20 metre diameter meteorite - travelling at an estimated 12 miles per second - exploded above the city with a force equivalent to 30 Hiroshima bombs.

Amazingly, no one was killed. But the resulting shockwave and shower of cosmic debris wreaked havoc over a wide area: damaging thousands of buildings, putting around 1600 people in hospital and drawing international attention to a risk that astronomers, scientists and Hollywood film-makers have been nervously contemplating for decades.

Every year, around 40,000 tonnes of space rock falls to the earth. This is mostly in the form of dust and small meteorites but occasionally something more substantial will enter our atmosphere. The Chelyabinsk meteor was thought to be the largest object of its kind since the so-called 1908 Tunguska event, when an asteroid of around 40m diameter devastated a 2000km2 area of remote Siberian forest.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of premium content. Register for free to unlock unlimited access to all of our premium content, as well as the latest technology news, industry opinion and special reports. 

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox