Artificial skin provides haptics for use in rehabilitation or VR
Scientists have developed a soft, flexible artificial skin made of silicone and electrodes that provides haptic feedback, an advance that could find use in medical rehabilitation and virtual reality.
The breakthrough has been made by EPFL's Reconfigurable Robotics Lab (RRL), headed by Jamie Paik, and the Laboratory for Soft Bioelectronic Interfaces (LSBI), headed by Stéphanie Lacour at the School of Engineering.
The skin's system of soft sensors and actuators enable the artificial skin to conform to the exact shape of a wearer's wrist, for example, and provide haptic feedback in the form of pressure and vibration. Strain sensors continuously measure the skin's deformation so that the haptic feedback can be adjusted in real-time to produce a realistic sense of touch. The scientists' work has just been published in Soft Robotics.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...