BCI senses expectations for more natural prosthetics

Researchers have developed a brain-computer interface (BCI) that senses when its user is expecting a reward, an advance that could lead to more natural prosthetics.

Image: Pixabay

The BCI is said to examine the interactions between single-neuron activities and the information flowing to these neurons. The work from the University of Houston is reported in eNeuro.

Joe France, a Professor of biomedical engineering, reports that his team’s findings allow for the development of an autonomously updating BCI that improves on its own, learning about its subject without having to be programmed.

The results have potential applications for robotic prosthetics, which would sense what a user wants to do and then does it. The university claims the work represents a significant step forward for prosthetics that perform more naturally.

“This will help prosthetics work the way the user wants them to,” said Francis. “The BCI quickly interprets what you’re going to do and what you expect as far as whether the outcome will be good or bad.”

Francis said that information drives scientists’ abilities to predict reward outcome to 97 per cent, up from the mid-70s. To understand the effects of reward on the brain’s primary motor cortex activity, Francis used implanted electrodes to investigate brainwaves and spikes in brain activity while tasks were performed to see how interactions are modulated by conditioned reward expectations.

“We assume intention is in there, and we decode that information by an algorithm and have it control either a computer cursor, for example, or a robotic arm,” Francis said in a statement.

According to the university, even when the task called for no movement, just passively observing an activity, the BCI was able to determine intention because the pattern of neural activity resembled that during movement.

“This is important because we are going to have to extract this information and brain activity out of people who cannot actually move, so this is our way of showing we can still get the information even if there is no movement,” said Francis. This process utilises mirror neurons, which fire when action is taken and action is observed.

“This examination of reward motivation in the primary motor cortex could be useful in developing an autonomously updating brain machine interface,” said Francis.