Better body armour
A US researcher has developed a process that increases the hardness and improves the ballistic performance of the material used by the US military for body armour.

A Georgia Institute of Technology researcher has developed a process that increases the hardness and improves the ballistic performance of the material used by the US military for body armour. The researcher’s start-up company is commercialising the technology.
Boron carbide is the US Defense Department’s material of choice for body armour. It is the third hardest material on earth, yet it’s extremely lightweight. But it has an Achilles heel that piqued the interest of Georgia Tech Professor of Materials Science and Engineering Robert Speyer five years ago.
He knew that the boron carbide powder used to form the armour had a reputation for poor performance during sintering — a high-temperature process in which particles consolidate, without melting, to eliminate pores between them in the solid state. Poor sintering yields a more porous material that fractures more easily – not a good thing for a soldier depending on it to stop a bullet.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of premium content. Register for free to unlock unlimited access to all of our premium content, as well as the latest technology news, industry opinion and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Water Sector Talent Exodus Could Cripple The Sector
Maybe if things are essential for the running of a country and we want to pay a fair price we should be running these utilities on a not for profit...