Nuclear neurons
A scanning method that draws on fusion research could change the way we think about the human brain.
We’re accustomed to engineering skills playing a central role in answering some of the big physics questions about the universe and the subatomic world. But new research using methods honed in plasma fusion reactors could address one of the central problems in biology: namely how the human brain functions at a mechanistic level.
Of course, we already have useful scanning techniques such as functional magnetic resonance imaging (fMRI) that give nice images showing different areas of the brain lighting up when subjects are asked to perform certain tasks. But fMRI is not without some major limitations: it is an indirect measure looking at blood oxygen perfusion as a proxy for actively firing neurons; and it frequently requires a bit of creative statistics to make the science stick.
Magnetoencephalography (MEG) is a scanning technique that is, in many ways, the opposite of MRI. Rather than using huge coils to generate magnetic fields of several Tesla and seeing how the brain reacts, MEG passively observes the tiny, femto-Tesla fields naturally generated by firing neurons. The technique has been around for more than 10 years and has found a practical use in surgical planning for removing brain lesions (see panel).
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of premium content. Register for free to unlock unlimited access to all of our premium content, as well as the latest technology news, industry opinion and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Comment: The UK is closer to deindustrialisation than reindustrialisation
"..have been years in the making" and are embedded in the actors - thus making it difficult for UK industry to move on and develop and apply...