Steel project takes a structured approach to autonomy

A vehicle engineering project involving UK consultancy Ricardo and WorldAutoSteel is exploring the role that advanced steels will play in next generation autonomous and connected vehicles. Jon Excell reports

From the development of algorithms that help driverless cars behave in a more human like manner to advances in the sensing systems that will enable tomorrow’s vehicles to understand and respond to their environment, progress towards the fully autonomous vehicle - where the technology has removed the need for any driver controls - is well under way.

But whilst recent years have seen key advances in the underpinning technologies that will make so-called level five autonomy a reality, until now there has been relatively little attention paid to the structural engineering challenges presented by a technology area that could profoundly impact the way that cars are designed and built.

Steel E-Motive, a project involving UK engineering consultancy Ricardo and led by WorldAutoSteel (the automotive arm of the World Steel Association) is aiming to address this through the development of a virtual concept vehicle that demonstrates the role that advanced steels could play in delivering on the promise of these next generation vehicles.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of premium content. Register for free to unlock unlimited access to all of our premium content, as well as the latest technology news, industry opinion and special reports. 

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox