3D-printed ceramics boost solar fuel efficiency
ETH Zurich has developed a new ceramic 3D printing process to develop bespoke structures that can significantly increase the efficiency of producing carbon-neutral solar fuel.

The Swiss technical university has been working on solar fuels for almost a decade, developing a patented reactor that uses concentrated sunlight to convert CO2 and water into syngas. This then forms the basis for fuels like solar kerosene for low-carbon aviation.
Through spinouts Climeworks and Synhelion, ETH Zurich has been commercialising the technology, working with partners including Lufthansa and Zurich Airport. Its first industrial-scale solar plant is due to begin operations in Germany soon, with a first commercial plant in Spain due to come online in 2025/2026, capable of producing 1.25 million litres of sustainable aviation fuel (SAF) per year.
ETH now claims that it has developed technology to dramatically increase the efficiency of its core process. In a paper published in Advanced Materials Interfaces, the researchers describe the new technique that has enabled the leap forward: an extrusion-based 3D printing process that uses a bespoke ink with low viscosity and a high concentration of ceria particles, maximising the solar reactor’s redox active material.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...