3D printed metamaterials offer novel optical properties

Engineers at Tufts University have developed 3D printed metamaterials with microwave or optical properties that are claimed to go beyond what is possible using conventional materials.

metamaterials
3D-printed hemispherical metamaterial can absorb microwaves at select frequencies (Credit: Hojat Rezaei Nejad, Tufts University, Nano Lab)

According to Tufts, the fabrication methods demonstrate how 3D printing can expand the range of geometric designs and material composites that lead to devices with novel optical properties, including a hemispherical device inspired by the compound eye of a moth that absorbs electromagnetic signals from any direction at selected wavelengths. The research is published in Microsystems & Nanoengineering.

In the study, researchers at the Nano Lab at Tufts describe a hybrid fabrication approach using 3D printing, metal coating and etching to create metamaterials with complex geometries and novel functionalities for wavelengths in the microwave range.

In one example, they created an array of tiny mushroom-shaped structures, each holding a small patterned metal resonator at the top of a stalk. This particular arrangement permits microwaves of specific frequencies to be absorbed, depending on the chosen geometry of the "mushrooms" and their spacing. Use of such metamaterials could be valuable in applications such as sensors in medical diagnosis and as antennas in telecommunications or detectors in imaging applications.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox