3D-printed thermoelectric device sets new records
Swansea team claims that cheap device has potential to help industry turn its waste heat into an asset
The thermoelectric effect occurs when dissimilar metals in contact with each other are heated, and electron transfer from one metal to another starts a current flowing. It has been known for many years, but it's best known application today might be in space, where probes that cannot access solar energy easily use it to convert the heat from a lump of radioactive material into electricity to power their systems.
A team from the SPECIFIC Innovation and Knowledge Centre at Swansea University has used additive manufacturing techniques to make a thermoelectric device which it claims has an efficiency factor 50 per cent higher than the previous best for printed materials. Moreover, the team adds, the device should be cheap to produce in bulk.
The device uses material called tin selenide (SnSe), a compound made up from tin and selenium in different oxidation states. Previous research has shown that SnSe has high potential for thermoelectric behaviour, but the methods to manufacture it have until now required a great deal of energy and have therefore been both expensive and environmentally unfavourable.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...