AI identifies sites on Moon for landing and exploration
AI is being used to improve the efficiency of finding sites on the Moon for landing and exploration.
The Moon-scanning method from an international team automatically classifies important lunar features from telescope images.
The choice of future landing and exploration sites may come down to the most promising locations for construction, minerals or energy resources but scanning by eye across such a large area is laborious and often inaccurate.
UK firm to send crawling spider-like rover to the moon
Late Great Engineers: Gene Cernan – the last man on the Moon
Siyuan Chen, Xin Gao and Shuyu Sun at KAUST in Saudi Arabia, along with colleagues from The Chinese University of Hong Kong, have now applied machine learning and AI to automate the identification of prospective lunar landing and exploration areas.
“We are looking for lunar features like craters and rilles, which are thought to be hotspots for energy resources like uranium and helium-3 - a promising resource for nuclear fusion,” Chen said in a statement. “Both have been detected in Moon craters and could be useful resources for replenishing spacecraft fuel.”
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...