Alloy could launch manned spacecraft made from aluminium
An alloy that hardens aluminium without significantly increasing its weight could one day lead to manned missions in spacecraft that are light and resistant to radiation.
This is the conclusion of research made possible at Huddersfield University’s MIAMI-2 – Microscopes and Ion Accelerators for Materials Investigations – facility.
Alloys help aluminium become harder via precipitation strengthening, but the radiation encountered in space can dissolve the hardening precipitates with potentially disastrous consequences.
Mars 2020 mission gears up for a red planet return
US team develops rust-based radiation shielding technique
Research carried out at MIAMI-2 in partnership with Montanuniversitaet Leoben (MUL), Austria, found that a particular hardening precipitate of a new aluminium alloy – developed by metallurgists led by Professor Stefan Pogatscher (MUL) – does not dissolve when bombarded with particle radiation when compared with existing data on irradiation of conventional aluminium alloys.
The result is an alloy with a radiation-resistant hardening phase called a T-phase, which has a complex crystal structure of Mg32(Zn,Al)49. The research led to a paper that has been published in Advanced Science.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...