Antenna-on-chip to enable internet-connected appliances

Wireless antennas small enough to squeeze onto computer chips could be built thanks to research at Cambridge University.

The antennas, at just 10 to 100 micrometres in size, could be used in mobile phones, radio frequency identification (RFID) tags and the so-called Internet of Things, in which everyday devices such as toasters are able to communicate wirelessly. The research is published in Physical Review Letters.

Antennas work by converting electrical energy into electromagnetic, or radio waves. These radio waves are then picked up and converted back into electrical energy by an antenna on the receiving device.

However, while the electronics used in mobile devices are constantly shrinking, the antennas have remained bulky in comparison, said Gehan Amaratunga, professor of engineering at Cambridge, who led the research team. “At the moment there is no prospect of integrating the antenna onto a chip because it’s just too big,” he said. “A typical antenna used in a mobile phone occupies around one quarter of the device’s cover.”

To tackle this problem, the researchers began investigating the use of piezoelectric thin film materials such as gallium nitride and gallium arsenide. These films, which vibrate when a voltage is applied to them, are a type of dielectric, or insulating material.  Piezoelectric thin films are much more efficient at storing energy within a certain volume than the dielectric materials conventionally used for mobile phone antennas, according to Amaratunga.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox