Atomically thin crystal for solar cell applications
A new ultrathin crystal might be the key to transparent and flexible solar cells
Graphene may have led the way for engineering with ultrathin materials, but other materials are now taking their place in the sun. Researchers in Austria have found that an atomically thin materials, tungsten diselenide (WSe2), may have great potential in solar cells which could be made transparent and even flexible.
Although graphene — single-layer carbon — has interesting properties for electronics, including very high conductivity, the energy levels of its non-binding electrons mean that it isn’t well suited for solar cells: it works well as a light detector, but no so well as a converter of contant solar irradiation into useful electric current. But according to Thomas Mueller and colleagues at the Vienna University of Technology, tungsten diselenide, whose structure consists of a flat plane of tungsten atoms connected by selenium atoms above and below the plane, fits the bill even better, as they explain in a paper in Nature Nanotechnology.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...