Bacteria coated electrodes lessen cost of CO2 conversion
Researchers at the University of Michigan have found a way to bypass a step that adds cost to converting carbon dioxide emissions into products including biofuels and pharmaceuticals.

Carbon is needed to make products such as clothing, perfume, jet fuel, concrete and plastic, but recycling CO2 typically requires that it be separated from other gasses which is costly.
Now, new kinds of electrodes, enhanced with a coating of bacteria, can circumvent that step. While conventional metal electrodes react with sulphur, oxygen and other components of air and flue gasses, the bacteria appear less sensitive to them. The work is detailed in Environmental Science Nano.
"The microbes on these electrodes, or biocatalysts, can use smaller concentrations of CO2 and seem more robust in terms of handling impurities when compared with electrodes that use metal catalysts," Joshua Jack, U-M assistant professor of civil and environmental engineering and first author of the paper said in a statement.
"Platforms that use metals seem to be much more sensitive to impurities and often need higher CO2 concentrations to work. So if you wanted to take CO2 directly out of power plants' emissions, the biotic catalyst may be able to do it with minimal clean-up of that gas."
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...