Bifunctional material protects against bio and chemical threats

A bifunctional material that deactivates biological threats and those used in chemical weapons has been developed by a team at Northwestern University in the US.

A simple bleach treatment restores the composite fabric to its original state after exposure to biological or chemical threats, making it a promising candidate for face masks and other protective clothing.

“Having a bifunctional material that has the ability to deactivate both chemical and biological toxic agents is crucial since the complexity to integrate multiple materials to do the job is high,” said Northwestern’s Omar Farha, an expert in metal-organic frameworks (MOFs) that underpin the technology.

Farha, a professor of chemistry in the Weinberg College of Arts and Sciences, is a co-corresponding author of the study.

The MOF/fibre composite builds on an earlier study in which Farha’s team created a nanomaterial that deactivates toxic nerve agents. With some small manipulations, the researchers were able to incorporate antiviral and antibacterial agents into the material.

Metal-organic framework materials show promise for fuel cells

Nano-sized MOF materials are designed with a lot of holes that can capture gases, vapours and other agents. In the new composite fabric, the cavities of the MOFs have catalysts that can deactivate toxic chemicals, viruses and bacteria. The porous nanomaterial can be easily coated on textile fibres.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox