Bimetallic catalyst
Material scientists at Washington University in St Louis have developed a bimetallic fuel cell catalyst that is two to five times more effective than commercial catalysts.
Material scientists at Washington University in St Louis (WUSTL) have developed a bimetallic fuel-cell catalyst that is two to five times more effective than commercial catalysts.
Dr Younan Xia, the James M McKelvey Professor of Biomedical Engineering at WUSTL, led a team of scientists at the university and the Brookhaven National Laboratory in developing the bimetallic catalyst, which is comprised of a palladium core or 'seed' that supports dendritic platinum branches, or arms, that are fixed on the nanostructure.
They synthesised the catalysts by sequentially reducing precursor compounds to palladium and platinum with L-ascorbic acid in an aqueous solution. The catalysts have a high surface area, invaluable for a number of applications besides fuel cells, and are robust and stable.
Xia and his team tested how the catalysts performed in the oxygen reduction reaction process in a fuel cell, which determines how large a current will be generated in an electrochemical system.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...