Bioprinter rapidly mimics tissues from brain to bone

Researchers at the University of Melbourne have developed a new 3D bioprinting technique that can rapidly create accurate analogues of virtually any human tissue.

Tessa van der Riet
Tessa van der Riet - The bioprinter can mimic a range of human tissues

Where most of today’s bioprinters rely on time-consuming layer-by-layer fabrication, the new platform uses an optical-based system where vibrating bubbles 3D print cellular structures in seconds. The technique is claimed to be 350 times than existing bioprinters, as well as enabling more accurate cell positioning for better replication of human tissue.

According to the Melbourne team, the device can mimic everything from soft brain tissue to tougher substances such as cartilage and bone. This accuracy combined with the platform’s speed could be a major boon for areas including cancer research and drug development. The work is published in Nature.

“In addition to drastically improving print speed, our approach enables a degree of cell positioning within printed tissues,” said Associate Professor David Collins, head of Melbourne’s Collins BioMicrosystems Laboratory.

“Incorrect cell positioning is a big reason most 3D bioprinters fail to produce structures that accurately represent human tissue. Just as a car requires its mechanical components to be arranged precisely for proper function, so too must the cells in our tissues be organised correctly. Current 3D bioprinters depend on cells aligning naturally without guidance, which presents significant limitations.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox