Bristol makes post-lithium-ion batteries breakthrough

Researchers at Bristol University have revealed a novel strategy for sustainable post-lithium-ion batteries, an advance believed to have far-reaching implications for e-vehicles and electronic devices.

The team is said to have developed high-performance sodium and potassium ion batteries using sustainably sourced cellulose.

In a paper published in Advanced Functional Materials, scientists from the university's Bristol Composites Institute describe a novel controllable unidirectional ice-templating strategy which can tailor the electrochemical performances of next-generation post-lithium-ion batteries with sustainability and large-scale availability.

Currently, electric vehicles and hand-held devices such as mobile phones rely largely on lithium-ion batteries. Batteries have two electrodes and a separator, with an electrolyte between them carrying the charge. Problems associated with using lithium for these batteries include build up of metal inside the devices, which can lead to short circuits and overheating.

Alternatives such as sodium and potassium batteries have not historically performed as well in terms of their rate performance and ability for repeated use. This is due to the larger sizes of sodium and potassium ions, and their ability to move through the batteries’ porous carbon electrodes.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox