Ceramic coating cracks corrosion
Researchers at Pacific Northwest National Laboratory have developed a new ceramic-based coating for steel and superalloys that prevents the degeneration that occurs in hostile environments.

Researchers at
have developed a new ceramic-based coating for steel and superalloys that prevents corrosion, oxidation, carburisation and sulphidation that commonly occur in gas, liquid, steam and other hostile environments.
The new coating bonds with the metal substrate and is “resilient, inexpensive and simple,” said PNNL scientist Chuck Henager. Because the coating is fabricated at significantly lower temperatures than typically required for conventional ceramic coatings, the new process also can save energy and reduce harmful emissions, he said.
Researchers created the coating by mixing a liquid preceramic polymer with aluminium metal-flake powders to form a slurry that can be applied to a metal object by dipping, painting or air-spraying. A low-temperature curing process follows, using a Ruthenium-based catalyst that enables polymer cross-linking and dries the slurry to a green state. The coated steel is then heated in air, nitrogen or argon at 700 to 900 degrees Celsius. The heat converts the green state layer into an aluminium diffusion/reaction layer that permeates the surface of the steel and provides an aluminide surface coating on the steel.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...