Chimeric materials
Bioengineers at Tufts University have created a new fusion protein that combines the toughness of spider silk with the intricate structure of silica.

Bioengineers at
have created a new fusion protein that for the first time combines the toughness of spider silk with the intricate structure of silica. The resulting nanocomposite could be used in medical and industrial applications, such as growing bone tissue.
“This is a novel genetic engineering strategy to design and develop new ‘chimeric’ materials by combining two of nature’s most remarkable materials -- spider silk and diatom glassy skeletons – that normally are not found together,” said David L. Kaplan, professor and chair of biomedical engineering and director of Tufts’ Bioengineering and Biotechnology Center.
Kaplan, along with his Tufts graduate students and collaborators Carol C. Perry from Nottingham Trent University in England and Rajesh Naik from the US Air Force Research Laboratory, released their findings in the paper “Novel Nanocomposites from Spider Silk-Silica Fusion (Chimeric) Proteins” published in the Proceedings of the National Academy of Sciences
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...