Chip mimics heart

A tiny chip that mimics a circulatory system could be an invaluable tool in understanding the causes of cardiovascular disease and developing drug therapies.

A tiny chip that mimics a circulatory system, right down to the rhythm of a human heart beat, could be an invaluable tool in understanding the causes of cardiovascular disease and developing drug therapies.

The system of tiny valves and channels on the chip mimic blood flow in the body, said biomedical engineering professor Shuichi Takayama, corresponding author of the paper, "Computer Controlled Microcirculatory Support System for Endothelial Cell Culture and Shearing," scheduled to appear in July in the journal Analytical Chemistry.

The design lets scientists study the fluid mechanical effects of blood flow (called shear stress) in certain cells that play a critical role in heart disease. The cells, called endothelial cells, line the inner walls of blood vessels. The changes in ECs caused when blood flows past them at different speeds and rhythms are at least partly responsible for fuelling certain diseases, including cardiovascular disease.

Studying endothelial cells in a Petri dish is often ineffective because the test environment is static, said Takayama, so the cells are not acting as they would in the body where they are exposed to flow. But with the University of Michigan system, scientists can adjust the flow through the channels on the chip so that the ECs think they are inside an artery or vein, or maybe even inside the blood vessels of a couch potato or a regular exerciser, Takayama said.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox