Collaboration developing silicon carbide ceramic matrix composites for fusion

Fusion-grade silicon carbide ceramic matrix composites are being developed in a collaboration between the National Composites Centre and the UK Atomic Energy Authority in support of the HASTE-F programme.

Fusion power plants will rely on hydrogen isotopes deuterium and tritium
Fusion power plants will rely on hydrogen isotopes deuterium and tritium - AdobeStock

Funded by the Royce Materials Challenge Accelerator Programme (MCAP) and led by UKAEA, HASTE-F is focused on addressing key engineering challenges in the use of silicon carbide composites (SiC/SiC) as a fusion material. Working with UKAEA, the NCC has identified a step change in SiC/SiC manufacturing that has the potential to transform the fusion sector, developing an efficient, scalable and cost-effective manufacturing route for ‘fusion-grade’ SiC materials.

In a statement, Dr James Wade-Zhu, senior materials engineer, UK Atomic Energy Authority, said: “Silicon carbide composites have the potential to enhance fusion by enabling reactors to operate at higher temperatures for improved thermal efficiency, greatly increasing the commercial viability of fusion energy production. We are pleased to be working closely with the National Composite Centre to address concerns around the scalability, formability, and performance of current SiC/SiC grades, bringing about the generation of new UK IP in the process.”

MORE FROM ENERGY & ENVIRONMENT

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox