Copper-based screen cloaks objects from microwaves

Researchers have developed a cloak that is micrometres thick and can hide 3D objects from microwaves in their natural environment, in all directions and from all of the observers’ positions.

The development is claimed to be an advance on previous attempts at so-called cloaking devices that have been bulky.

Presenting their study today, 26 March, in the Institute of Physics and German Physical Society’s New Journal of Physics, the researchers, from the University of Texas at Austin, have used a new, ultrathin layer called a metascreen.

The metascreen cloak was made by attaching strips of 66µm-thick copper tape to a 100µm-thick, flexible polycarbonate film in a fishnet design. It was used to cloak an 18cm cylindrical rod from microwaves and is said to have shown optimal functionality when the microwaves were at a frequency of 3.6GHz and over a moderately broad bandwidth.

The researchers also predict that due to the inherent conformability (bendiness) of the metascreen and the robustness of the proposed cloaking technique, oddly shaped and asymmetrical objects can be cloaked with the same principles.

Objects are detected when waves – whether they are sound, light, x-rays or microwaves – rebound off its surface.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox