Crystal 'fault lines' triple strength of magnesium alloy

Researchers from North Carolina State University have developed a new technique for creating stronger, lightweight magnesium alloys that have potential structural applications in the automobile and aerospace industries.

They achieved this by strengthening magnesium alloys with so-called nano-spaced stacking faults.

According to the university, these are essentially a series of parallel fault-lines in the crystalline structure of the alloy that isolate any defects in that structure. This increases the overall strength of the material by approximately 200 per cent.

‘This material is not as strong as steel, but it is so much lighter that its specific strength is actually much higher,’ said Dr Suveen Mathaudhu, a co-author of a paper on the research and an adjunct assistant professor of materials science and engineering at NC State under the US Army Research Office’s Staff Research Program. ‘In theory, you could use twice as much of the magnesium alloy and still be half the weight of steel. This has real potential for replacing steel or other materials in some applications, particularly in the transportation industry – such as the framework or panels of vehicles.’

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox