CYRIL shines a light on the brains of newborn babies

A research team at UCL has developed CYRIL, a new tool that non-invasively monitors brain tissue physiology in newborn babies to help doctors make more informed clinical decisions.

The compact broadband near-infrared spectroscopy (NIRS) system has been developed by UCL’s Multimodal-Spectroscopy (MMS Group) team.

The portable device, which is small enough for use in neonatal intensive care units (NICU) and accident and emergency (A&E) rooms, is currently being used in preclinical studies and in clinical studies in the neonatal unit at University College London Hospital (UCLH).

During birth, disruptions in blood and oxygen supply to a baby’s brain can stop it from working properly. This can lead to an acute injury to the developing brain, and can ultimately lead to significant disability and death. While many babies make a partial to full recovery, some will develop cerebral palsy or behavioural problems.

Detecting and monitoring newborn brain function following such disruption is vital for doctors if they are to understand the effects of the injury and neurodevelopmental outcomes for the baby.

CYRIL is claimed to offer a safe way of shining light through the brain tissue of a newborn baby and detecting its function with a sensitive digital camera. This reveals detailed information about oxygen and metabolism levels, providing potentially life-saving information for doctors. The research team have demonstrated that the metabolic information collected by CYRIL can identify brain injury severity.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox