Deep learning model boosts earthquake analysis
Seismologists in California and Germany have developed a deep learning model for forecasting earthquake aftershocks that can outperform existing data analysis methods.

Known as RECAST (Recurrent Earthquake forecast), the programme was created by researchers at the University of California, Santa Cruz and Technical University of Munich. It’s claimed that RECAST outperformed the current model, known as the Epidemic Type Aftershock Sequence (ETAS) model, for earthquake catalogues of about 10,000 events and greater. The work is published in Geographical Physical Letters.
“The ETAS model approach was designed for the observations that we had in the 80s and 90s when we were trying to build reliable forecasts based on very few observations,” said lead author Kelian Dascher-Cousineau, who recently completed his PhD at UC Santa Cruz. “It’s a very different landscape today.”
Due to the proliferation of more sensitive seismological equipment and an increase in data storage capabilities, earthquake catalogues have become larger and more detailed. According to study co-author Emily Brodsky, the traditional ETAS model was not built to handle these larger data sets.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...