Disrupting bacterial communication opens up artifical cell design
Artificial materials based on simple synthetic polymers can disrupt the way in which bacteria communicate with each other.

New research, published in the journal Nature Chemistry and involving experts from the universities of Newcastle, Nottingham and Birmingham, is expected to further understanding of how to design artificial cells and produce materials that will interact with microorganisms and control their behaviour.
According to Newcastle University, this will open up a range of potential applications including drug discovery and energy production and could improve knowledge on how better to control and exploit bacteria in the future.
Natalio Krasnogor, Professor of Computer Science and Synthetic Biology at Newcastle University and joint lead on the study, said: ‘The computational design of synthetic biological systems is a crucial step in the understanding and optimisation of antimicrobial strategies and this paper illustrates the crucial role that computational techniques play in state-of-the-art synthetic biology.
‘The European Centre for Disease Prevention and Control (ECDC) has estimated that healthcare associated infections occur in around 4.1 million patients a year in the EU, and that 37,000 deaths are caused every year as a result of such infections.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...