Doped diamond coating could enhance electronics
A new method for creating thin films of diamonds may allow manufacturers to enhance future electronics.

In industrial settings, diamonds are particularly valued for their hardness, optical clarity, smoothness, and resistance to chemicals, radiation and electrical fields.
For electronics applications, researchers dope diamonds in order to make them conductive, introducing the semiconductor boron into the diamond manufacturing process.
It has previously been a challenge to imbue electronic devices with diamond-like qualities by applying a doped diamond coating, or thin film because the high temperatures required to apply a doped diamond thin film would destroy sensitive electronics, including biosensors, semiconductors, and photonic and optical devices.
In a paper published in Applied Physics Letters, a team of researchers at Advanced Diamond Technologies in Romeoville, Illinois report creating thin films of boron-doped diamond at temperatures low enough (between 460-600°C) to coat many of these devices.
While low-temperature deposition of boron-doped diamond thin films is not conceptually new, the research team found no evidence in the literature of such diamond films that had both sufficient quality and manufacturing rates fast enough to be commercially useful.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Comment: The UK is closer to deindustrialisation than reindustrialisation
"..have been years in the making" and are embedded in the actors - thus making it difficult for UK industry to move on and develop and apply...