Dual-membrane battery has potential to unlock long-term energy storage from renewables
A dual-membrane approach to battery design could facilitate low-cost, long-term energy storage, according to Imperial College London researchers.

The team of engineers and chemists have created a polysulfide-air redox flow battery (PSA RFB), a dual membrane design that overcomes the main problems with this type of large-scale battery. According to the team, this opens its potential to store excess energy from renewable energy sources. The research is published in Nature Communications.
In redox flow batteries, energy is stored in liquid electrolytes which flow through the cells during charge and discharge, enabled through chemical reactions. The amount of energy stored is determined by the volume of the electrolyte, making the design potentially easy to scale up. The downside is that the vanadium electrolyte used in conventional redox flow batteries is expensive and primarily sourced from China or Russia.
Led by Professors Nigel Brandon and Anthony Kucernak, the team worked on alternatives that use lower cost materials which are widely available. Their approach uses a liquid as one electrolyte and a gas as the other – in this case polysulfide and air. The performance of polysulfide-air batteries is limited because no membrane could fully enable the chemical reactions to take place while still preventing polysulfide crossing over into the other part of the cell.
In a statement, Dr Mengzheng Ouyang, from Imperial’s Department of Earth Science and Engineering, said: “If the polysulfide crosses over into the air side, then you lose material from one side, which reduces the reaction taking place there and inhibits the activity of the catalyst on the other. This reduces the performance of the battery – so it was a problem we needed to solve.”
The alternative devised by the researchers was to use two membranes to separate the polysulfide and the air, with a solution of sodium hydroxide between them. According to Imperial, the advantage of the design is that all materials, including the membranes, are relatively cheap and widely available, and that the design provides far more choice in the materials that can be used.
Compared with the best results obtained to date from a polysulfide-air redox flow battery, the new design was able to provide up to 5.8 milliwatts per centimetre squared.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...