Energy-storing membrane may 'perform better than batteries'
An energy-storing membrane promises greater cost-effectiveness in delivering energy compared to existing batteries.

Dr Xie Xian Ning from the National University of Singapore’s Nanoscience and Nanotechnology Initiative and his team developed the soft, foldable membrane using a polystyrene-based polymer.
When sandwiched between two charged metal plates it can store charge at 0.2 farads per square centimetre, which is claimed to be well above the typical upper limit for a standard capacitor.
‘Compared to rechargeable batteries and supercapacitors, the proprietary membrane allows for very simple device configuration and low fabrication cost,’ said Dr Xie. ‘Moreover, the performance of the membrane surpasses those of rechargeable batteries, such as lithium ion and lead-acid batteries, and supercapacitors.’
The cost to store each farad is said to be $0.62 (£0.40) compared with about $7 (£4.50) per farad for existing liquid electrolyte based technologies. This translates to an energy cost of 10–20 watt-hour per US dollar for the membrane, as compared to just 2.5 watt-hour per US dollar for lithium ion batteries.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
UK not prepared for climate impacts, says CCC
Perhaps a Longtitude prize to solve railway line problems. "extreme heat causing further disruption through rail buckling and power line...