Engineers create semiconductor-free microelectronics
Researchers at the University of California San Diego have developed what they say is the world’s first semiconductor-free, optically-controlled microelectronic device, which could lead to faster electronics and more efficient solar panels.
Semiconductors are at the heart of modern computing devices but are approaching the physical limits of what they can achieve using current materials. As a result, Moore’s Law - which predicts that computing power should double every two years - is no longer holding true.
To overcome this problem, the UC San Diego engineers replaced the electrons flowing through semiconductors with free electrons floating in space, similar to the vacuum tubes of early computing, but on a nanoscale. But liberating electrons from materials is difficult, requiring either high voltages, high temperatures or high powered lasers, none of which are practical for microelectronics.
However, the team was able to fabricate a device that releases electrons without the need for these extremes. Described in the journal Nature Communications, it consists of a gold metasurface with mushroom-shaped nanostructures on an array of parallel gold strips.This sits on top of a silicon wafer, with a layer of silicon dioxide in between.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...