Finding NEMO

IBM researchers have found a way to extend a key chip-manufacturing process to generate smaller chip circuits, potentially postponing the semiconductor industry's conversion to an expensive alternative.

researchers have found a way to extend a key chip-manufacturing process to generate smaller chip circuits, potentially postponing the semiconductor industry's high-risk conversion to an extremely expensive alternative.

IBM scientists have created the smallest, high-quality line patterns ever made using deep-ultraviolet (DUV, 193-nanometre) optical lithography -- a technology currently used to essentially "print" circuits on chips. The distinct and uniformly spaced ridges are only 29.9 nanometres wide. This is less than one-third the size of the 90-nanometre features now in mass production and below the 32 nanometres that industry consensus held as the limit for optical lithography techniques.

For decades, the semiconductor industry has relied on continually shrinking circuits to drive increases in the performance and function of chips and the products that use them. But as chip features now approach the fundamental scale limits of individual atoms and molecules, the future of this trend of improvement, known as Moore's Law, is being threatened. IBM's new result indicates that a "high-index immersion" variant of DUV lithography may provide a path for extending Moore's Law further, thus buying the industry time.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox