Forming a nano bond

A team from Rensselaer Polytechnic Institute has reported two new but differing techniques for placing carbon nanotube patterns on metal surfaces of just about any shape and size.

The results, which appear in separate papers from the November issue of Nature Nanotechnology and the October 16 issue of Applied Physics Letters (APL), could help overcome some of the key hurdles to using carbon nanotubes in computer chips, displays, sensors, and many other electronic devices.

‘Carbon nanotubes offer promising applications in fields ranging from electronics to biotechnology,’ said Saikat Talapatra, a postdoctoral research associate with the Rensselaer Nanotechnology Center and lead author of the Nature Nanotechnology paper. But since many of these applications are based on the superior conductivity of carbon nanotubes, good contact between nanotubes and conducting metal components is essential.

Both of the newly developed techniques could bring the use of nanotubes as interconnects on computer chips closer to reality, a long-sought goal in the nanotechnology community. As chipmakers seek to continually increase computing power, they are looking to shrink the dimensions of chip components to the nanometre scale. Communication between components becomes increasingly difficult at this scale, making carbon nanotubes a natural choice to replace metal wires, according to the researchers.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox