Fuel cells improved by adding caffeine to electrodes

Researchers have realised an 11 times increase in a fuel cell’s oxygen reduction reaction by adding caffeine to the electrodes.

AdobeStock

According to the team from Chiba University, Japan, the addition of caffeine can enhance the efficiency of the fuel cell, reduce the requirement for excess platinum catalysts, and lead to cheaper and more efficient fuel cells.

In a hydrogen fuel cell, hydrogen undergoes oxidation at the anode, producing hydrogen ions and electrons. The ions move through the electrolyte to the cathode, and electrons flow through an external circuit, generating electricity. At the cathode, oxygen combines with the hydrogen ions and electrons, resulting in water as a by-product.

The water reacts with the platinum (Pt) catalyst, forming a layer of platinum hydroxide (PtOH) on the electrode, which obstructs the efficient catalysis of the oxygen reduction reaction (ORR), leading to energy losses. To maintain efficient operation, fuel cells require a high Pt loading, which increases the costs of fuel cells.  

Now, in a study published in Communications Chemistry, Professor Nagahiro Hoshi, along with Masashi Nakamura, Ryuta Kubo, and Rui Suzuki have found that adding caffeine to certain platinum electrodes can increase the activity of the ORR.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox