Fuel for bionic muscles

University of Texas at Dallas nanotechnologists have made alcohol- and hydrogen-powered artificial muscles that are 100 times stronger than natural muscles.

(UTD) nanotechnologists have made alcohol- and hydrogen-powered artificial muscles that are 100 times stronger than natural muscles.

Today’s autonomous robots are limited in their range and operating time by batteries which store too little energy and deliver it at too low a rate for prolonged or intense activity. To solve these problems, the team from UTD's NanoTech Institute developed two different types of artificial muscles that, like natural muscles, convert the chemical energy of an energetic fuel to mechanical energy.

Dr John Main from the Defense Advanced Projects Agency (DARPA) and Dr Ray H. Baughman, Robert A. Welch Professor of Chemistry and director of the UTD NanoTech Institute foresee artificial muscles for autonomous humanoid robots that protect people from danger, artificial limbs that act like natural limbs and exoskeletons that provide super-human strength to firefighters, astronauts and soldiers. These would be able to perform lengthy missions by using shots of alcohol as a highly energetic fuel.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox