Going up in the world

A fully loaded firefighter could reach the top of a 30-story building in only 30 seconds, thanks to an invention by a student at MIT.

The ability to leap tall buildings in a single bound used to be the stuff of comic-book fantasy. Nathan Ball, a 23-year-old graduate student at the Massachusetts Institute of Technology and this year’s winner of the $30,000 Lemelson-MIT Student Prize, has invented a device that makes the fantasy a reality.

With the help of Ball's ATLAS Powered Rope Ascender, a fully loaded firefighter could reach the top of a 30-story building in only 30 seconds, compared to the six minutes or more it often takes to trudge up stairs with 80 to 100 pounds of equipment. The device, which is the size of a hand-held power tool, can lift a 250-pound load more than 600 feet into the air at nearly 10 feet per second, all on a single battery charge.

In November 2004, Ball and three colleagues entered the Soldier Design Competition sponsored by the MIT Institute for Soldier Nanotechnologies. The competition called for a high-powered device to enable rapid vertical mobility.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox